Mercurial > games > semicongine
comparison semiconginev2/old/collision.nim @ 1218:56781cc0fc7c compiletime-tests
did: renamge main package
author | sam <sam@basx.dev> |
---|---|
date | Wed, 17 Jul 2024 21:01:37 +0700 |
parents | semicongine/old/collision.nim@a3eb305bcac2 |
children |
comparison
equal
deleted
inserted
replaced
1217:f819a874058f | 1218:56781cc0fc7c |
---|---|
1 import ./core | |
2 | |
3 const MAX_COLLISON_DETECTION_ITERATIONS = 20 | |
4 const MAX_COLLISON_POINT_CALCULATION_ITERATIONS = 20 | |
5 | |
6 type | |
7 ColliderType* = enum | |
8 Box, Sphere, Points | |
9 Collider* = object | |
10 transform*: Mat4 = Unit4F32 | |
11 case theType*: ColliderType | |
12 of Box: discard | |
13 of Sphere: radius*: float32 | |
14 of Points: points*: seq[Vec3f] | |
15 | |
16 func between(value, b1, b2: float32): bool = | |
17 min(b1, b2) <= value and value <= max(b1, b2) | |
18 | |
19 func Contains*(collider: Collider, x: Vec3f): bool = | |
20 # from https://math.stackexchange.com/questions/1472049/check-if-a-point-is-inside-a-rectangular-shaped-area-3d | |
21 case collider.theType: | |
22 of Box: | |
23 let | |
24 P1 = collider.transform * NewVec3f(0, 0, 0) # origin | |
25 P2 = collider.transform * Z | |
26 P4 = collider.transform * X | |
27 P5 = collider.transform * Y | |
28 u = (P1 - P4).Cross(P1 - P5) | |
29 v = (P1 - P2).Cross(P1 - P5) | |
30 w = (P1 - P2).Cross(P1 - P4) | |
31 uP1 = u.Dot(P1) | |
32 uP2 = u.Dot(P2) | |
33 vP1 = v.Dot(P1) | |
34 vP4 = v.Dot(P4) | |
35 wP1 = w.Dot(P1) | |
36 wP5 = w.Dot(P5) | |
37 ux = u.Dot(x) | |
38 vx = v.Dot(x) | |
39 wx = w.Dot(x) | |
40 ux.between(uP1, uP2) and vx.between(vP1, vP4) and wx.between(wP1, wP5) | |
41 of Sphere: | |
42 (collider.transform * x).Length < (collider.transform * NewVec3f()).Length | |
43 of Points: | |
44 raise newException(Exception, "Points are not supported yet for 'contains'") | |
45 | |
46 # implementation of GJK, based on https://blog.winter.dev/2020/gjk-algorithm/ | |
47 | |
48 # most generic implementation of findFurthestPoint | |
49 # add other implementations of findFurthestPoint for other kind of geometry or optimization | |
50 # (will be selected depening on type of the first parameter) | |
51 func findFurthestPoint(points: openArray[Vec3f], direction: Vec3f): Vec3f = | |
52 var maxDist = low(float32) | |
53 for p in points: | |
54 let dist = direction.Dot(p) | |
55 if dist > maxDist: | |
56 maxDist = dist | |
57 result = p | |
58 | |
59 func findFurthestPoint(transform: Mat4, direction: Vec3f): Vec3f = | |
60 return findFurthestPoint( | |
61 [ | |
62 transform * NewVec3f(0, 0, 0), | |
63 transform * X, | |
64 transform * Y, | |
65 transform * Z, | |
66 transform * (X + Y), | |
67 transform * (X + Z), | |
68 transform * (Y + Z), | |
69 transform * (X + Y + Z), | |
70 ], | |
71 direction | |
72 ) | |
73 func findFurthestPoint(collider: Collider, direction: Vec3f): Vec3f = | |
74 case collider.theType | |
75 of Sphere: | |
76 let directionNormalizedToSphere = ((direction / direction.Length) * collider.radius) | |
77 collider.transform * directionNormalizedToSphere | |
78 of Box: | |
79 findFurthestPoint(collider.transform, direction) | |
80 of Points: | |
81 findFurthestPoint(collider.points, direction) | |
82 | |
83 func supportPoint(a, b: Collider, direction: Vec3f): Vec3f = | |
84 a.findFurthestPoint(direction) - b.findFurthestPoint(-direction) | |
85 | |
86 func sameDirection(direction: Vec3f, ao: Vec3f): bool = | |
87 direction.Dot(ao) > 0 | |
88 | |
89 func line(simplex: var seq[Vec3f], direction: var Vec3f): bool = | |
90 let | |
91 a = simplex[0] | |
92 b = simplex[1] | |
93 ab = b - a | |
94 ao = - a | |
95 | |
96 if sameDirection(ab, ao): | |
97 direction = Cross(Cross(ab, ao), ab) | |
98 else: | |
99 simplex = @[a] | |
100 direction = ao | |
101 | |
102 return false | |
103 | |
104 func triangle(simplex: var seq[Vec3f], direction: var Vec3f, twoDimensional = false): bool = | |
105 let | |
106 a = simplex[0] | |
107 b = simplex[1] | |
108 c = simplex[2] | |
109 ab = b - a | |
110 ac = c - a | |
111 ao = - a | |
112 abc = ab.Cross(ac) | |
113 | |
114 if sameDirection(abc.Cross(ac), ao): | |
115 if sameDirection(ac, ao): | |
116 simplex = @[a, c] | |
117 direction = ac.Cross(ao).Cross(ac) | |
118 else: | |
119 simplex = @[a, b] | |
120 return line(simplex, direction) | |
121 else: | |
122 if (sameDirection(ab.Cross(abc), ao)): | |
123 simplex = @[a, b] | |
124 return line(simplex, direction) | |
125 else: | |
126 if twoDimensional: | |
127 return true | |
128 if (sameDirection(abc, ao)): | |
129 direction = abc | |
130 else: | |
131 simplex = @[a, c, b] | |
132 direction = -abc | |
133 | |
134 return false | |
135 | |
136 func tetrahedron(simplex: var seq[Vec3f], direction: var Vec3f): bool = | |
137 let | |
138 a = simplex[0] | |
139 b = simplex[1] | |
140 c = simplex[2] | |
141 d = simplex[3] | |
142 ab = b - a | |
143 ac = c - a | |
144 ad = d - a | |
145 ao = - a | |
146 abc = ab.Cross(ac) | |
147 acd = ac.Cross(ad) | |
148 adb = ad.Cross(ab) | |
149 | |
150 if sameDirection(abc, ao): | |
151 simplex = @[a, b, c] | |
152 return triangle(simplex, direction) | |
153 if sameDirection(acd, ao): | |
154 simplex = @[a, c, d] | |
155 return triangle(simplex, direction) | |
156 if sameDirection(adb, ao): | |
157 simplex = @[a, d, b] | |
158 return triangle(simplex, direction) | |
159 | |
160 return true | |
161 | |
162 func getFaceNormals(polytope: seq[Vec3f], faces: seq[int]): (seq[Vec4f], int) = | |
163 var | |
164 normals: seq[Vec4f] | |
165 minTriangle = 0 | |
166 minDistance = high(float32) | |
167 | |
168 for i in countup(0, faces.len - 1, 3): | |
169 let | |
170 a = polytope[faces[i + 0]] | |
171 b = polytope[faces[i + 1]] | |
172 c = polytope[faces[i + 2]] | |
173 | |
174 var normal = (b - a).Cross(c - a).Normalized() | |
175 var distance = normal.Dot(a) | |
176 | |
177 if distance < 0: | |
178 normal = normal * -1'f32 | |
179 distance = distance * -1'f32 | |
180 | |
181 normals.add normal.ToVec4(distance) | |
182 | |
183 if distance < minDistance: | |
184 minTriangle = i div 3 | |
185 minDistance = distance | |
186 | |
187 return (normals, minTriangle) | |
188 | |
189 func addIfUniqueEdge(edges: var seq[(int, int)], faces: seq[int], a: int, b: int) = | |
190 let reverse = edges.find((faces[b], faces[a])) | |
191 if (reverse >= 0): | |
192 edges.delete(reverse) | |
193 else: | |
194 edges.add (faces[a], faces[b]) | |
195 | |
196 func nextSimplex(simplex: var seq[Vec3f], direction: var Vec3f, twoDimensional = false): bool = | |
197 case simplex.len | |
198 of 2: simplex.line(direction) | |
199 of 3: simplex.triangle(direction, twoDimensional) | |
200 of 4: simplex.tetrahedron(direction) | |
201 else: raise newException(Exception, "Error in simplex") | |
202 | |
203 func collisionPoint3D(simplex: var seq[Vec3f], a, b: Collider): tuple[normal: Vec3f, penetrationDepth: float32] = | |
204 var | |
205 polytope = simplex | |
206 faces = @[ | |
207 0, 1, 2, | |
208 0, 3, 1, | |
209 0, 2, 3, | |
210 1, 3, 2 | |
211 ] | |
212 (normals, minFace) = getFaceNormals(polytope, faces) | |
213 minNormal: Vec3f | |
214 minDistance = high(float32) | |
215 iterCount = 0 | |
216 | |
217 while minDistance == high(float32) and iterCount < MAX_COLLISON_POINT_CALCULATION_ITERATIONS: | |
218 minNormal = normals[minFace].xyz | |
219 minDistance = normals[minFace].w | |
220 var | |
221 support = supportPoint(a, b, minNormal) | |
222 sDistance = minNormal.Dot(support) | |
223 | |
224 if abs(sDistance - minDistance) > 0.001'f32: | |
225 minDistance = high(float32) | |
226 var uniqueEdges: seq[(int, int)] | |
227 var i = 0 | |
228 while i < normals.len: | |
229 if sameDirection(normals[i], support): | |
230 var f = i * 3 | |
231 | |
232 addIfUniqueEdge(uniqueEdges, faces, f + 0, f + 1) | |
233 addIfUniqueEdge(uniqueEdges, faces, f + 1, f + 2) | |
234 addIfUniqueEdge(uniqueEdges, faces, f + 2, f + 0) | |
235 | |
236 faces[f + 2] = faces.pop() | |
237 faces[f + 1] = faces.pop() | |
238 faces[f + 0] = faces.pop() | |
239 | |
240 normals[i] = normals.pop() | |
241 | |
242 dec i | |
243 inc i | |
244 | |
245 var newFaces: seq[int] | |
246 for (edgeIndex1, edgeIndex2) in uniqueEdges: | |
247 newFaces.add edgeIndex1 | |
248 newFaces.add edgeIndex2 | |
249 newFaces.add polytope.len | |
250 | |
251 polytope.add support | |
252 | |
253 var (newNormals, newMinFace) = getFaceNormals(polytope, newFaces) | |
254 if newNormals.len == 0: | |
255 break | |
256 | |
257 var oldMinDistance = high(float32) | |
258 for j in 0 ..< normals.len: | |
259 if normals[j].w < oldMinDistance: | |
260 oldMinDistance = normals[j].w | |
261 minFace = j | |
262 | |
263 if (newNormals[newMinFace].w < oldMinDistance): | |
264 minFace = newMinFace + normals.len | |
265 | |
266 for f in newFaces: | |
267 faces.add f | |
268 for n in newNormals: | |
269 normals.add n | |
270 inc iterCount | |
271 | |
272 result = (normal: minNormal, penetrationDepth: minDistance + 0.001'f32) | |
273 | |
274 | |
275 func collisionPoint2D(polytopeIn: seq[Vec3f], a, b: Collider): tuple[normal: Vec3f, penetrationDepth: float32] = | |
276 var | |
277 polytope = polytopeIn | |
278 minIndex = 0 | |
279 minDistance = high(float32) | |
280 iterCount = 0 | |
281 minNormal: Vec2f | |
282 | |
283 while minDistance == high(float32) and iterCount < MAX_COLLISON_POINT_CALCULATION_ITERATIONS: | |
284 for i in 0 ..< polytope.len: | |
285 let | |
286 j = (i + 1) mod polytope.len | |
287 vertexI = polytope[i] | |
288 vertexJ = polytope[j] | |
289 ij = vertexJ - vertexI | |
290 var | |
291 normal = NewVec2f(ij.y, -ij.x).Normalized() | |
292 distance = normal.Dot(vertexI) | |
293 | |
294 if (distance < 0): | |
295 distance *= -1'f32 | |
296 normal = normal * -1'f32 | |
297 | |
298 if distance < minDistance: | |
299 minDistance = distance | |
300 minNormal = normal | |
301 minIndex = j | |
302 | |
303 let | |
304 support = supportPoint(a, b, minNormal.ToVec3) | |
305 sDistance = minNormal.Dot(support) | |
306 | |
307 if(abs(sDistance - minDistance) > 0.001): | |
308 minDistance = high(float32) | |
309 polytope.insert(support, minIndex) | |
310 inc iterCount | |
311 | |
312 result = (normal: NewVec3f(minNormal.x, minNormal.y), penetrationDepth: minDistance + 0.001'f32) | |
313 | |
314 func Intersects*(a, b: Collider, as2D = false): bool = | |
315 var | |
316 support = supportPoint(a, b, NewVec3f(0.8153, -0.4239, if as2D: 0.0 else: 0.5786)) # just random initial vector | |
317 simplex = newSeq[Vec3f]() | |
318 direction = -support | |
319 n = 0 | |
320 simplex.insert(support, 0) | |
321 while n < MAX_COLLISON_DETECTION_ITERATIONS: | |
322 support = supportPoint(a, b, direction) | |
323 if support.Dot(direction) <= 0: | |
324 return false | |
325 simplex.insert(support, 0) | |
326 if nextSimplex(simplex, direction, twoDimensional = as2D): | |
327 return true | |
328 # prevent numeric instability | |
329 if direction == NewVec3f(0, 0, 0): | |
330 direction[0] = 0.0001 | |
331 inc n | |
332 | |
333 func Collision*(a, b: Collider, as2D = false): tuple[hasCollision: bool, normal: Vec3f, penetrationDepth: float32] = | |
334 var | |
335 support = supportPoint(a, b, NewVec3f(0.8153, -0.4239, if as2D: 0.0 else: 0.5786)) # just random initial vector | |
336 simplex = newSeq[Vec3f]() | |
337 direction = -support | |
338 n = 0 | |
339 simplex.insert(support, 0) | |
340 while n < MAX_COLLISON_DETECTION_ITERATIONS: | |
341 support = supportPoint(a, b, direction) | |
342 if support.Dot(direction) <= 0: | |
343 return result | |
344 simplex.insert(support, 0) | |
345 if nextSimplex(simplex, direction, twoDimensional = as2D): | |
346 let (normal, depth) = if as2D: collisionPoint2D(simplex, a, b) else: collisionPoint3D(simplex, a, b) | |
347 return (true, normal, depth) | |
348 # prevent numeric instability | |
349 if direction == NewVec3f(0, 0, 0): | |
350 direction[0] = 0.0001 | |
351 inc n | |
352 | |
353 func CalculateCollider*(points: openArray[Vec3f], theType: ColliderType): Collider = | |
354 var | |
355 minX = high(float32) | |
356 maxX = low(float32) | |
357 minY = high(float32) | |
358 maxY = low(float32) | |
359 minZ = high(float32) | |
360 maxZ = low(float32) | |
361 center: Vec3f | |
362 | |
363 for p in points: | |
364 minX = min(minX, p.x) | |
365 maxX = max(maxX, p.x) | |
366 minY = min(minY, p.y) | |
367 maxY = max(maxY, p.y) | |
368 minZ = min(minZ, p.z) | |
369 maxZ = max(maxz, p.z) | |
370 center = center + p | |
371 center = center / float32(points.len) | |
372 | |
373 let | |
374 scaleX = (maxX - minX) | |
375 scaleY = (maxY - minY) | |
376 scaleZ = (maxZ - minZ) | |
377 | |
378 if theType == Points: | |
379 result = Collider(theType: Points, points: @points) | |
380 else: | |
381 result = Collider(theType: theType, transform: Translate(minX, minY, minZ) * Scale(scaleX, scaleY, scaleZ)) | |
382 | |
383 if theType == Sphere: | |
384 result.transform = Translate(center) | |
385 for p in points: | |
386 result.radius = max(result.radius, (p - center).Length) |